SYNTHESIS AND THERMAL BEHAVIOUR OF 4,4'-BIPYRIDYL AND 2,4'-BIPYRIDYL COMPLEXES OF Co(II), Ni(II) AND Cu(II) THIOCYANATES

D. Czakis-Sulikowska and J. Kałużna

Institute of General and Ecological Chemistry, Technical University, 90-924 Łódż, Poland

(Received July 13, 1995; in revised form February 3, 1996)

Abstract

The synthesis and characterization of $CoL_2(NCS)_2 \cdot 2H_2O$, $NiL_2(NCS)_2 \cdot 2H_2O$, $CuL(NCS)_2 \cdot 3H_2O$ (L=4,4'-bipyridyl, 4-bipy) $CoX_3(NCS)_2 \cdot H_2O$, $NiX_3(NCS)_2$ and $CuX_2(NCS)_2$ (X=2,4'-bipyridyl, 2,4'-bipy) are reported. The IR spectra and other physical properties of these compounds are discussed. The thermal properties of the complexes in the solid state were studied under non-isothermal conditions in air atmosphere. The intermediates of dehydration and decomposition at different temperatures were characterized by X-ray diffraction.

Keywords: 2,4'-bipyridyl complexes, 4,4'-bipyridyl complexes, IR spectra, thermal decomposition, transition-metal complexes

Introduction

The conditions of thermal decomposition of thiocyanato complexes of Co(II), Ni(II) and Cu(II) with various organic N-donors have been studied by many authors [1–10]. The synthesis and physico-chemical properties (except the thermal behaviour) of thiocyanato complexes of these metals have been studied intensively, but only with 2,2'-bipyridyl (2-bipy) and other amines [11–15]. Only fragmentary information is available in the literature on the 4,4'-bipyridyl (4-bipy) complexes of transition-metal thiocyanates [16, 17]. The complex Co(4-bipy)(NCS)₂ was described by Yadava *et al.* [16]. The compounds of Co(II), Ni(II) and Cu(II) thiocyanates with 2,4'-bipyridyl (2,4'-bipy) are unknown.

The aim of the present work was to obtain the 4-bipy and 2,4'-bipy complexes of Co(II), Ni(II) and Cu(II) thiocyanates in the solid state, to examine some of their physico-chemical properties and to study their thermal decomposition in air.

of complexes in water at $21^{\circ}C$ ($L=4,4'$ -bipyridyl; $X=2,4'$ -bipyridyl)	
ତ	
1 Analytical data and solubility	
Table	

Complex		Analy	Analysis: found (calculated)/%	ted)/%		S-10 ³ /
(colour)	W	C	z	H	SCN	mol dm ⁻³
I. CoL ₂ (NCS) ₂ ·2H ₂ O	11.06	50.70	15.96	3.82	22.40	2.00
(light-rose)	(11.26)	(50.48)	(16.05)	(3.85)	(22.19)	
II. NiL ₂ (NCS) ₂ ·2H ₂ O	11.24	50.60	16.25	3.82	22.50	2.50
(light-blue)	(11.22)	(50.50)	(16.10)	(3.85)	(22.20)	
III. CuL(NCS)2:3H20	16.50	36.70	14.65	3.25	29.50	1.67
(green)	(16.29)	(36.96)	(14.37)	(3.62)	(29.79)	
IV. CoX ₃ (NCS) ₂ ·H ₂ O	9.50	58.20	17.00	3.90	17.32	2.00
(rose)	(8.91)	(58.11)	(16.93)	(3.96)	(17.55)	
V. NiX ₃ (NCS) ₂	9.54	59.80	17.37	3.70	18.54	3.33
(blue-green)	(9.12)	(59.73)	(17.41)	(3.76)	(18.05)	
VI. CuX ₂ (NCS) ₂	12.72	53.79	17.13	3.23	23.50	2.00
(light-green)	(12.91)	(53.70)	17.08)	(3.28)	(23.61)	

J. Thermal Anal., 47, 1996

Experimental

Physical measurements

The apparatus and measuring conditions were the same as described previously [18].

Preparation and analysis of the complexes

4,4'-bipy (*m.p.* 69.5°C), 2,4'-bipy (*m.p.* 61°C) and Co(NCS)₂ were obtained from Aldrich; other chemicals were of p.a. grade from POCh-Gliwice. Solvated nickel thiocyanate was prepared according to the reaction:

 $Ni(ClO_4)_2 + 2KNCS \rightarrow Ni(NCS)_2 + 2KClO_4 \downarrow$, in 96% (v/v) EtOH.

Cobalt and nickel complexes

 $Co(NCS)_2$ or Ni(NCS)₂ (4.3 mmol in 10 cm³) and 4-bipy (12.9 mmol in 10 cm³) were dissolved in warm 75% (ν/ν) EtOH and the mixture was heated on a water-bath. Crystallization occurred during the heating. The mixture was allowed to cool, and the products were filtered off, washed with a cold mixture of EtOH and Et₂O (1:1), and dried in air. The preparation of 2,4'-bipy complexes was similar, except that the reactants were dissolved in warm H₂O containing a few drops of 96% (ν/ν) EtOH.

Copper complex

Cu(4-bipy)(NCS)₂·3H₂O was prepared by mixing 4.3 mmol CuSO₄·5H₂O in 50 cm³ of 75% (ν/ν) EtOH and 12.9 mmol 4-bipy in 50 cm³ of 75% (ν/ν) EtOH. This suspension was mixed with 4.3 cm³ of an aqueous solution of 2M NH₄NCS (molar ratio Cu^{II}:SCN⁻=1:2). The reaction mixture was stirred at 50°C for about 20 min. The resulting solid green product was filtered off, washed with a mixture of EtOH and Et₂O (1:1) and dried at room temperature. Cu(2,4'-bipy)₂(NCS)₂ was synthesized as for the 4-bipy complex, except that the reactants were dissolved in warm H₂O containing a few drops of 96% (ν/ν) EtOH. Many complexes of Cu(NCS)₂ with other N-donors have been prepared by a similar procedure [1, 11].

Metal analyses were carried out complexometrically with edta as the complexing agent, after decomposition of the compounds by HNO₃. The contents of C, H and N were determined by elemental analysis with V_2O_5 as oxidizing agent, and thiocyanate by the Volhard method. Solubilities were determined in H₂O at 21°C from the total M-ion concentration in saturated solution. Analytical data on the complexes obtained are presented in Table 1, together with the colours and solubilities in water. The solubilities of the complexes in water were similar $[(2-3)\times10^{-3} \text{ mol dm}^{-3}]$. They were practically insoluble in benzene, CCl₄ and CHCl₃, but fairly soluble in EtOH. All the isolated complexes were air stable at room temperature. The crystalline compound Cu(2,4'-bipy)₂(NCS)₂ is a new example of a complex exhibiting ligand isomerism. The complex Cu(2-bipy)₂(NCS)₂ has been described in the literature [11, 19].

Results and discussion

Infrared spectra

The IR spectra of free 4-bipy and 2,4'-bipy differ from those of their complexes with M(NCS)₂. The ring vibration $v_{(C=N)}$ at 1590 cm⁻¹ for free 4-bipy is shifted by 15-20 cm⁻¹ towards higher frequencies in the complexes. The ring vibration $v_{(C=C)}$ at 1530 cm⁻¹ for the free ligand is observed in the region ca 1538 cm⁻¹. The characteristic ring breathing mode at 982 cm⁻¹ for substituted pyridines is shifted for the complexes $(1006-1012 \text{ cm}^{-1})$. These changes are ascribed to the fact that 4-bipy is coordinated to M [20]. The IR spectrum of 2,4'-bipy is the sum of the spectra of 2-substituted and 4-substituted pyridine [21]. Upon coordination with M(NCS)₂, the IR spectrum of free 2,4'-bipy undergoes a change only in the ring vibration modes of 4-substituted pyridine. The ring vibration $v_{(C=N)}$ of 4-substituted pyridine, at 1595 cm⁻¹ for free 2,4'-bipy, is observed in the range 1610-1618 cm⁻¹ for the complexes. The band attributed to the stretching ring vibration (4-sub), observed at 1405 cm⁻¹ for the free ligand, is shifted by ca 10 cm^{-1} to higher frequencies. The breathing frequency for (4sub), observed at 990 cm^{-1} for the free ligand, is displaced by ca 20 cm^{-1} towards higher frequencies. The positive shift of these bands of 4-substituted pyridine indicates coordination of 2,4'-bipy via the less hindering 4 N'-atom [22].

The thiocyanate fundamentals v_{C-N} , v_{C-S} and δ_{NCS} are listed in Table 2. The bands are typical of covalently bound isothiocyanate [8, 11]. A broad band in

Complex	IR	spectra	
	V _{C-N}	V _{C-S}	δ _{NCS}
CoL ₂ (NCS) ₂ ·2H ₂ O	2100 vs, 2065 sh	822 s	472 m
NiL ₂ (NCS) ₂ ·2H ₂ O	2070 vs	Δ	478 s
CuL(NCS)2·3H2O	2090 vs, 2060 pd	820 s	472 s
CoX ₃ (NCS) ₂ ·H ₂ O	2103 vs, 2068 pd	Δ	474 s
NiX ₃ (NCS) ₂	2106 vs, 2094 pd	Δ	476 s
CuX ₂ (NCS) ₂	2070 vs, 2102 pd	821 s	474 m

Table 2 IR bands of thiocyanate groups, cm⁻¹

 Δ - overlaid by bipy absorption, v, m, s, sh, pd - very, medium, strong, shoulder, poorly resolved doublet

the water stretching region (ca $3050 - 3500 \text{ cm}^{-1}$) and a shoulder in the water bending region (ca 1660 cm^{-1}) are observed for complexes (I), (II), (III) and (IV); the water wagging modes appear at ca $530 - 500 \text{ cm}^{-1}$ for coordinated water. The M-O stretching vibrations are observed as weak bands in the interval ca $442-488 \text{ cm}^{-1}$.

Thermal properties of the complexes

The data obtained from the TG, DTG and DTA curves, supported by chemical analysis and the X-ray diffraction pattern investigations, permit the following conclusions (Table 3): all the complexes decompose progressively. They lose water and the volatile ligands differently. In compounds (I), (II) and (IV), the loss of the last molecule of 4-bipy (or 2,4'-bipy) is accompanied by

Fig. 1 Thermoanalytical curves of Co(4-bipy)₂(NCS)₂·2H₂O (a), Co(2,4'-bipy)₃(NCS)₂·H₂O (b)

, on low	DTA	Ranges of	Mass	Mass loss/%	The observed
comprex	peaks/°C	decomposition/°C	found	calcd.	process
CoL ₂ (NCS) ₂ ·2H ₂ O	110 endo	70-120	7.0	6.88	-2H2O
	238 endo	160–242	30.0	29.84	7
	340, 462	280-470	42.0		forms Co ₃ O ₄
	exo				with 6% CoSO4
	780 endo	~800	6.0	47.95	pure Co ₃ O ₄
	900 e ndo	800-910	1.2	1.02	decompose to CoO
NiL ₂ (NCS) ₂ .2H ₂ O	75 endo	50-100	3.5	3.44	-H2O
	250 endo	140-270	34.0	33.29	-H20, -L
	318 endo,	300-420	39.0		forms mixture
	390 exo				NiSO ₄ and NiO*
	490, 760	> 780	9.5	48.99	forms pure NiO
	exo				

Table 3 Decomposition process of complexes in air

Coult/INCS)2:3H2O peaks/°C CuL(NCS)2:3H2O 100 endo 180 endo 240 endo 305 endo 305 endo 305 endo 370 endo 418 exo, 750 endo CoX ₃ (NCS)2·H ₂ O 70 endo 145 endo 250 endo 250 endo 250 endo	s/°C endo endo endo	decomposition/°C 60-105 140-190 190-245	found		
	opu opu opu	60-105 140-190 190-245		calcd.	process
	opus opus	140–190 190–245	4.5	4.62	-H ₂ O
	opus	190–245	4.5	4.62	-H ₂ O
	opu		25.0	24.65	-H ₂ O, -0.5L
		245-340	20.0	20.03	-0.5L
	opus	340–390	19.0	19.00	forms Cu ₂ S(CN) ₂
	,xo,	390–760	7.0	6.68	forms CuO via mixture
	opu				CuSO ₄ + Cu ₂ OSO ₄
		> 850			Cu ₂ O**
145 en 250 en 288 en	opu	55-110	2.7	2.72	-H2O
250 cn 288 cn	opu	110-222	18.0	17.70	-0.75X
288 en	opu	222–275	17.5	17.70	-0.75X
	opu	275–290	17.5	17.70	-0.75X
		290–300	11.0	11.80	-0.5X
430-562	562	300–565	18.0		mixture CoSO ₄
exo	0				and Co ₃ O ₄
680 endo	opu	~800	3.0	20.25	pure Co ₃ O ₄
895 endo	opu	800-905	1.0	0.81	decomposition to CoO

Table 3 Continued

1769

J. Thermal Anal., 47, 1996

(Omnley					I LIC UUSUI VU
vardmoo	peaks/°C	decomposition/°C	found	calcd.	process
NiX ₃ (NCS) ₂	218 endo	140-240	12.0	12.14	-0.5X
	280 endo	240-320	60.5	60.68	-2.5X, decomposes to
	315 exo				Ni(NCS) ₂
	390 exo	340-400	6.0	5.61	forms NiO ₃ S
	470, 500	400540	6.0		forms mixture of
	exo				NiSO ₄ and NiO***
	720 endo	> 775	4.0	9.96	forms pure NiO
CuX ₂ (NCS) ₂	195 endo	120-220	31.5	31.74	X-
	260 endo	220280	31.0	31.74	X-
	370 endo	280–388	15.0	15.06	forms Cu ₂ S(CN) ₂
	420 exo,	388-760	6.0	5.30	forms CuO via mixture
	740 endo				CuSO ₄ +Cu ₂ OSO ₄
		> 850			Cu2O**

1770

J. Thermal Anal., 47, 1996

Table 3 Continued

Fig. 2 Thermoanalytical curves of Ni(4-bipy)₂(NCS)₂·2H₂O (a), Ni(2,4'-bipy)₃(NCS)₂ (b)

decomposition of the NCS groups, as shown by a marked exothermic peak in the DTA curves (Table 3 and Figs 1-3).

 $CoL_2(NCS)_2 \cdot 2H_2O$ loses all its water within the temperature range 70– 120°C, with an endothermic peak at 110°C. The anhydrous complex eliminates 1 mol of 4-bipy, and $CoL(NCS)_2$ is formed. This has been described in the literature [16]. On heating in air, the intermediate Co_3O_4 with ca. 6% CoSO₄ is formed at 470°C. The X-ray diffraction pattern indicates the formation of Co_3O_4 and $CoSO_4$ in the sinter of $CoL_2(NCS)_2 \cdot 2H_2O$ heated up to 470°C (Fig. 4a). On temperature elevation, pure Co_3O_4 is formed. A horizontal mass level begins at 910°C (conversion of Co_3O_4 to CoO). The DTA curve exhibits several endothermic peaks and two very strong exothermic peaks, at 340 and 462°C.

In the first step of decomposition, the complex NiL₂(NCS)₂·2H₂O loses 1 mol of H₂O at 50–100°C. The corresponding endothermic peak in the DTA curve is at 75°C. Next, the compound loses the remaining water and 1 mol of 4-bipy, and NiL(NCS)₂ is formed. In the last deamination step at 300–420°C,

Fig. 3 Thermoanalytical curves of Cu(4-bipy)(NCS)₂·3H₂O (a), Cu(2,4'-bipy)₂(NCS)₂ (b)

the remaining 4-bipy is eliminated, accompanied by anion decomposition, and a non-stoichiometric mixture of NiSO₄ and NiO with traces of other decomposition products is formed. The corresponding exothermic peak in the DTA curve is high (390°C). Next, the process of NiSO₄ decomposition takes place. A plateau in the TG curve begins at 780°C. Calculations on the mass loss at this point indicate stoichiometry for NiO (found 14.0%; calcd. 14.28%). The diffraction pattern of NiL₂(NCS)₂·2H₂O heated up to 780°C is similar to that of original NiO.

When CuL(NCS)₂·3H₂O is heated, in the first stage 1 mol of H₂O is split off $(60-105^{\circ}C)$, at 140-190°C the next 1 mol of water is split off, and at 190-245°C all the water and 0.5 mol of 4-bipy are eliminated, to form the intermediate 2Cu(NCS)₂·L. In the temperature interval 245-340°C, further decomposition steps are observed and Cu(NCS)₂ is formed. This begins to decompose as the temperature increases.

At 340–390°C, $Cu_2S(CN)_2$ is probably formed temporarily. This intermediate was also observed by Kabešová *et al.* [3] during the thermal decomposition of thiocyanato Cu(II) complexes with pyridine. The product formed during the

Fig. 4 X-ray diffraction patterns of decomposition products of Co(4-bipy)₂(NCS)₂·2H₂O heated up to 470°C (a), Co(2,4'-bipy)₃(NCS)₂·H₂O heated up to 570°C (b); (x) Co₃O₄; (o) CoSO₄

decomposition of $Cu_2S(CN)_2$ is oxidized to a non-stoichiometric mixture containing $CuSO_4$, $CuOSO_4$ and CuO (Fig. 5a). A reaction accompanied by a slight increase in mass proceeds in the range 390–440°C. An exothermic peak is observed at 418°C. The horizontal mass level occurs at about 760°C (endothermic peak at 750°C). Calculation from the mass loss at this point indicates stoichiometry for CuO (found 20.0%, calcd. 20.40%) (see also Fig. 5b). Above 850°C, CuO is converted very slowly to Cu_2O .

 $CoX_3(NCS)_2$ ·H₂O displays very similar behaviour to that of $CoL_2(NCS)_2$ · 2H₂O during its thermal decomposition. However, compound (IV) loses the 2,4'-bipy in several steps, and formation of a non-stoichiometric mixture of CoSO₄ and Co₃O₄ occurs in different temperature ranges. The corresponding exothermic peak in the DTA curve for compound (IV) is high and broad (430–562°C). The diffraction pattern of CoX₃(NCS)₂·H₂O heated up to 570°C is similar to that of the sinter of compound(I) heated up to 470°C (Fig. 4b).

The thermal curves of NiX₃(NCS)₂ are shown in Fig. 2b. It can be seen that the complex has constant mass up to 140° C. The 2,4'-bipy is removed in two steps, after which the decomposition of Ni(NCS)₂ begins at 340°C. During this process, an intermediate NiO₃S (found 21.5%; calcd. 21.57%) is formed. The

Fig. 5 X-ray diffraction patterns of decomposition products of Cu(4-bipy)(NCS)₂·3H₂O heated up to 600°C (a), Cu(4-bipy)(NCS)₂·3H₂O heated up to 760°C and 850°C (b); (x) CuSO₄; (o) Cu₂OSO₄; (▲) CuO

diffraction pattern of the decomposition products of compound (V) heated up to 400°C is also almost identical to that of NiO₃S (Fig. 6a). On increase of the temperature, NiO₃S is gradually oxidized to a mixture of NiSO₄ and NiO. In the sinter of NiX₃(NCS)₂ heated up to 600°C, these compounds also appear (Fig. 6b). The decompositions of Ni(NS)₂ and NiO₃S relate to the exothermic effects (three clear peaks in the DTA curve) at 390, 470 and 500°C. Above 775°C, pure NiO is formed.

 $CuX_2(NCS)_2$ has constant mass up to 120°C. The 2,4'-bipy is lost in two stages, and $Cu(NCS)_2$ is formed at about 280°C. The products formed during the decomposition of $Cu(NCS)_2$ are similar to those appearing for $CuL(NCS)_2$ ·3H₂O.

To summarize, the anhydrous complexes are more stable, and begin to decompose at higher temperatures than those containing water molecules. Many decomposition processes of the investigated complexes proceed simultaneously. Products of varying composition are formed, depending on the compound under investigation. However, it can be stated that in each case the molecules of 4-bipy or 2,4'-bipy are gradually eliminated, and the thiocyanates are partly oxidized (via products which are often difficult to identify) to sulphates, forming MSO₄ or M₂OSO₄. At higher temperatures, the sulphates decompose and the corre-

Fig. 6 X-ray diffraction patterns of decomposition products of Ni(2,4'-bipy)₃(NCS)₂ heated up to 400°C (a), Ni(2,4'-bipy)₃(NCS)₂ heated up to 600°C (b); (●) NiO₃S; (o) NiSO₄; (x) NiO

sponding oxides remain. These conclusions are in agreement with data given in the literature on other metal thiocyanato complexes with organic N-donors [2-7, 9, 10]. During the thermal decompositions, several new complexes with 4-bipy and 2,4'-bipy are formed as intermediates.

* * *

This work was supported by KBN project No. PB 0636/P3/93/04.

References

- 1 M. Kabešová, J. Kohout and J. Gažo, Monatsh. Chem., 107 (1976) 641.
- 2 L. Macašková, M. Kabešová, J. Garaj and J. Gažo, ibid., 104 (1973) 1473.
- 3 M. Kabešová, T. Šramko, J. Gažo, E. K. Zumadilov and V. I. Nefedov, J. Thermal Anal., 13 (1978) 55.
- 4 E. Jóna, T. Šramko and J. Gažo, ibid., 16 (1979) 213.
- 5 M. Jamnicky and E. Jóna, Z. Anorg. Allg. Chem., 487 (1982) 225; Collection Czechoslovak Chem. Commun., 47 (1982) 2479.
- 6 E. Jóna and M. Jamnicky, J. Thermal Anal., 27 (1983) 359.
- 7 E. Jóna and M. Jamnicky and T. Šramko, Z. Anorg. Allg. Chem., 447 (1978) 207.
- 8 A. M. Golub and H. Köhler, Chemie der Pseudohalogenide, VEB, Berlin 1979.

- 9 L. Erdey and G. Liptay, Periodica Polytechnica (Budapest), 7 (1963) 223.
- 10 W. W. Wendlandt and S. Iftikhar Ali, Z. Anorg. Allgem. Chem., 337 (1965) 6.
- 11 M. Melnik, M. Kabešová, L. Macašková and J. Mroziński, Bull. Polish Acad. Scien. Chem., 40 (1992) 175.
- 12 A. Cristini and G. Ponticelli, J. Inorg. Nucl. Chem., 35 (1973) 2691.
- 13 C. M. Harris and E. D. McKenzie, ibid., 29 (1967) 1047.
- 14 C. M. Harris, T. N. Lockyer and H. Watermann, Nature, 192 (1961) 424.
- 15 P. P. Singh, U. P. Shukla, R. Makhija and R. Rivest, J. Inorg. Nucl. Chem., 37 (1975) 679.
- 16 Ch. L. Yadava, S. Tripathi and I. S. Ahuja, Transit, Met. Chem., 11 (1986) 295.
- D. Czakis-Sulikowska and T. Raźniewska, Zeszyty Naukowe Politechniki Lódzkiej, Chemia, 30 (1974) 205.
- 18 J. Radwańska-Doczekalska, D. Czakis-Sulikowska, M. Markiewicz., J. Thermal Anal., (in press).
- 19 B. J. Hathaway, I. M. Procter, R. C. Slade and A. A. G. Tomlinson., J. Chem. Soc. 17 (1969) 2219.
- 20 J. R. Ferraro and K. S. Davis., Inorg. Chem. Acta, 3 (1969) 685.
- 21 C. K. Pearce, D. W. Grosse and W. Hessel., Chem. Eng. Data, 15 (1970) 567.
- 22 P. Caston, F. Dahan, S. Wimmer and F. L. Wimmer, J. Chem. Soc. Dalton Trans., 2971 (1990).