SYNTHESIS AND THERMAL BEHAVIOUR OF
 4,4'-BIPYRIDYL AND 2,4'-BIPYRIDYL COMPLEXES OF Co(II), Ni(II) AND Cu(II) THIOCYANATES

D. Czakis-Sulikowska and J. Katużna
Institute of General and Ecological Chemistry, Technical University, 90-924 Lódż, Poland

(Received July 13, 1995; in revised form February 3, 1996)

Abstract

The synthesis and characterization of $\mathrm{CoL}_{2}(\mathrm{NCS})_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}, \mathrm{NiL}_{2}\left(\mathrm{NCS}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}, \mathrm{CuL}(\mathrm{NCS})_{2}-\right.$ $3 \mathrm{H}_{2} \mathrm{O}$ ($L=4,4^{\prime}$-bipyridyl, 4-bipy) $\mathrm{CoX}_{3}\left(\mathrm{NCS}_{2}\right)_{2} \mathrm{H}_{2} \mathrm{O}, \mathrm{NiX}_{3}\left(\mathrm{NCS}_{2}{ }_{2}\right.$ and $\mathrm{CuX}_{2}(\mathrm{NCS})_{2}\left(X=2,4^{\prime}-\right.$ bipyridyl, $2,4^{\prime}$-bipy) are reported. The IR spectra and other physical properties of these compounds are discussed. The thermal properties of the complexes in the solid state were studied under non-isothermal conditions in air atmosphere. The intermediates of dehydration and decomposition at different temperatures were characterized by X -ray diffraction.

Keywords: 2,4'-bipyridyl complexes, 4,4'-bipyridyl complexes, IR spectra, thermal decomposition, transition-metal complexes

Introduction

The conditions of thermal decomposition of thiocyanato complexes of Co (II), $\mathrm{Ni}(\mathrm{II})$ and $\mathrm{Cu}(\mathrm{II})$ with various organic N -donors have been studied by many authors [1-10]. The synthesis and physico-chemical properties (except the thermal behaviour) of thiocyanato complexes of these metals have been studied intensively, but only with $2,2^{\prime}$-bipyridyl (2-bipy) and other amines [11-15]. Only fragmentary information is available in the literature on the 4,4'-bipyridyl (4bipy) complexes of transition-metal thiocyanates [16, 17]. The complex $\mathrm{Co}(4-$ bipy)(NCS $)_{2}$ was described by Yadava et al. [16]. The compounds of Co (II), $\mathrm{Ni}(\mathrm{II})$ and $\mathrm{Cu}(\mathrm{II})$ thiocyanates with $2,4^{\prime}$-bipyridyl ($2,4^{\prime}$-bipy) are unknown.

The aim of the present work was to obtain the 4-bipy and 2,4'-bipy complexes of $\mathrm{Co}(\mathrm{II}), \mathrm{Ni}(\mathrm{II})$ and $\mathrm{Cu}(\mathrm{II})$ thiocyanates in the solid state, to examine some of their physico-chemical properties and to study their thermal decomposition in air.
Table 1 Analytical data and solubility (S) of complexes in water at $21^{\circ} \mathrm{C}$ ($L=4,4^{\prime}$-bipyridyl; $X=2,4^{\prime}$-bipyridyl)

Complex (colour)	Analysis: found (calculated)/\%					$\begin{gathered} S \cdot 10^{3} / \\ \mathrm{mol} \mathrm{dm}^{-3} \end{gathered}$
	M	C	N	H	SCN	
I. $\mathrm{CoL}_{2}(\mathrm{NCS})_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$	11.06	50.70	15.96	3.82	22.40	2.00
(light-rose)	(11.26)	(50.48)	(16.05)	(3.85)	(22.19)	
II. $\mathrm{NiL}_{2}(\mathrm{NCS})_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$	11.24	50.60	16.25	3.82	22.50	2.50
(light-blue)	(11.22)	(50.50)	(16.10)	(3.85)	(22.20)	
III. $\mathrm{CuL}(\mathrm{NCS})_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}$	16.50	36.70	14.65	3.25	29.50	1.67
(green)	(16.29)	(36.96)	(14.37)	(3.62)	(29.79)	
IV. $\mathrm{CoX}_{3}(\mathrm{NCS})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$	9.50	58.20	17.00	3.90	17.32	2.00
(rose)	(8.91)	(58.11)	(16.93)	(3.96)	(17.55)	
V. $\mathrm{NiX}_{3}(\mathrm{NCS})_{2}$	9.54	59.80	17.37	3.70	18.54	3.33
(blue-green)	(9.12)	(59.73)	(17.41)	(3.76)	(18.05)	
VI. $\mathrm{CuX}_{2}(\mathrm{NCS})_{2}$	12.72	53.79	17.13	3.23	23.50	2.00
(light-green)	(12.91)	(53.70)	17.08)	(3.28)	(23.61)	

Experimental

Physical measurements

The apparatus and measuring conditions were the same as described previously [18].

Preparation and analysis of the complexes

$4,4^{\prime}$-bipy (m.p. $69.5^{\circ} \mathrm{C}$), $2,4^{\prime}$-bipy (m.p. $61^{\circ} \mathrm{C}$) and $\mathrm{Co}(\mathrm{NCS})_{2}$ were obtained from Aldrich; other chemicals were of p.a. grade from POCh-Gliwice. Solvated nickel thiocyanate was prepared according to the reaction:

$$
\mathrm{Ni}\left(\mathrm{ClO}_{4}\right)_{2}+2 \mathrm{KNCS} \rightarrow \mathrm{Ni}(\mathrm{NCS})_{2}+2 \mathrm{KClO}_{4} \downarrow, \text { in } 96 \%(v / v) \mathrm{EtOH} .
$$

Cobalt and nickel complexes

$\mathrm{Co}(\mathrm{NCS})_{2}$ or $\mathrm{Ni}(\mathrm{NCS})_{2}\left(4.3 \mathrm{mmol}\right.$ in $10 \mathrm{~cm}^{3}$) and 4-bipy (12.9 mmol in $10 \mathrm{~cm}^{3}$) were dissolved in warm $75 \%(v / v) \mathrm{EtOH}$ and the mixture was heated on a water-bath. Crystallization occurred during the heating. The mixture was allowed to cool, and the products were filtered off, washed with a cold mixture of EtOH and $\mathrm{Et}_{2} \mathrm{O}$ (1:1), and dried in air. The preparation of 2,4'-bipy complexes was similar, except that the reactants were dissolved in warm $\mathrm{H}_{2} \mathrm{O}$ containing a few drops of $96 \%(v / v) \mathrm{EtOH}$.

Copper complex

$\mathrm{Cu}\left(4\right.$-bipy) $(\mathrm{NCS})_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ was prepared by mixing $4.3 \mathrm{mmol} \mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ in $50 \mathrm{~cm}^{3}$ of $75 \%(v / v) \mathrm{EtOH}$ and 12.9 mmol 4 -bipy in $50 \mathrm{~cm}^{3}$ of $75 \%(v / v)$ EtOH. This suspension was mixed with $4.3 \mathrm{~cm}^{3}$ of an aqueous solution of $2 M$ $\mathrm{NH}_{4} \mathrm{NCS}$ (molar ratio $\mathrm{Cu}^{\mathrm{II}}: \mathrm{SCN}=1: 2$). The reaction mixture was stirred at $50^{\circ} \mathrm{C}$ for about 20 min . The resulting solid green product was filtered off, washed with a mixture of EtOH and $\mathrm{Et}_{2} \mathrm{O}$ (1:1) and dried at room temperature. $\mathrm{Cu}\left(2,4^{\prime} \text {-bipy }\right)_{2}(\mathrm{NCS})_{2}$ was synthesized as for the 4 -bipy complex, except that the reactants were dissolved in warm $\mathrm{H}_{2} \mathrm{O}$ containing a few drops of $96 \%(v / v)$ EtOH . Many complexes of $\mathrm{Cu}(\mathrm{NCS})_{2}$ with other N -donors have been prepared by a similar procedure [1, 11].

Metal analyses were carried out complexometrically with edta as the complexing agent, after decomposition of the compounds by HNO_{3}. The contents of C, H and N were determined by elemental analysis with $\mathrm{V}_{2} \mathrm{O}_{5}$ as oxidizing agent, and thiocyanate by the Volhard method. Solubilities were determined in $\mathrm{H}_{2} \mathrm{O}$ at $21^{\circ} \mathrm{C}$ from the total M-ion concentration in saturated solution. Analytical data on the complexes obtained are presented in Table 1, together with the
colours and solubilities in water. The solubilities of the complexes in water were similar $\left[(2-3) \times 10^{-3} \mathrm{~mol} \mathrm{dm}^{-3}\right]$. They were practically insoluble in benzene, CCl_{4} and CHCl_{3}, but fairly soluble in EtOH . All the isolated complexes were air stable at room temperature. The crystalline compound $\mathrm{Cu}\left(2,4^{\prime} \text {-bipy }\right)_{2}(\mathrm{NCS})_{2}$ is a new example of a complex exhibiting ligand isomerism. The complex $\mathrm{Cu}(2-$ bipy $)_{2}(\mathrm{NCS})_{2}$ has been described in the literature [11, 19].

Results and discussion

Infrared spectra

The IR spectra of free 4-bipy and 2,4'-bipy differ from those of their complexes with $\mathrm{M}(\mathrm{NCS})_{2}$. The ring vibration $v_{(\mathrm{C}=\mathrm{N})}$ at $1590 \mathrm{~cm}^{-1}$ for free 4-bipy is shifted by $15-20 \mathrm{~cm}^{-1}$ towards higher frequencies in the complexes. The ring vibration $v_{(\mathrm{C}=\mathrm{C})}$ at $1530 \mathrm{~cm}^{-1}$ for the free ligand is observed in the region ca $1538 \mathrm{~cm}^{-1}$. The characteristic ring breathing mode at $982 \mathrm{~cm}^{-1}$ for substituted pyridines is shifted for the complexes ($1006-1012 \mathrm{~cm}^{-1}$). These changes are ascribed to the fact that 4 -bipy is coordinated to M [20]. The IR spectrum of $2,4^{\prime}$-bipy is the sum of the spectra of 2 -substituted and 4 -substituted pyridine [21]. Upon coordination with $\mathrm{M}(\mathrm{NCS})_{2}$, the IR spectrum of free $2,4^{\prime}$-bipy undergoes a change only in the ring vibration modes of 4 -substituted pyridine. The ring vibration $v_{(\mathrm{C}=\mathrm{N})}$ of 4 -substituted pyridine, at $1595 \mathrm{~cm}^{-1}$ for free 2,4'-bipy, is observed in the range $1610-1618 \mathrm{~cm}^{-1}$ for the complexes. The band attributed to the stretching ring vibration ($4-\mathrm{sub}$), observed at $1405 \mathrm{~cm}^{-1}$ for the free ligand, is shifted by ca $10 \mathrm{~cm}^{-1}$ to higher frequencies. The breathing frequency for (4sub), observed at $990 \mathrm{~cm}^{-1}$ for the free ligand, is displaced by ca $20 \mathrm{~cm}^{-1}$ towards higher frequencies. The positive shift of these bands of 4 -substituted pyridine indicates coordination of $2,4^{\prime}$-bipy via the less hindering $4 \mathrm{~N}^{\prime}$-atom [22].

The thiocyanate fundamentals $v_{\mathrm{C}-\mathrm{N}}, v_{\mathrm{C}-\mathrm{s}}$ and δ_{Ncs} are listed in Table 2. The bands are typical of covalently bound isothiocyanate [8, 11]. A broad band in

Table 2 IR bands of thiocyanate groups, cm^{-1}

Complex	IR spectra			
	$v_{\mathrm{C}-\mathrm{N}}$	$v_{\mathrm{C}-\mathrm{s}}$	δ_{NCS}	
$\mathrm{CoL}_{2}(\mathrm{NCS})_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$	$2100 \mathrm{vs}, 2065 \mathrm{sh}$	822 s	472 m	
$\mathrm{NiL}_{2}(\mathrm{NCS})_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$	2070 vs	Δ	478 s	
$\mathrm{CuL}^{(\mathrm{NCS})_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}}$	$2090 \mathrm{vs}, 2060 \mathrm{pd}$	820 s	472 s	
$\mathrm{CoX}_{3}(\mathrm{NCS})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$	$2103 \mathrm{vs}, 2068 \mathrm{pd}$	Δ	474 s	
$\mathrm{NiX}_{3}(\mathrm{NCS})_{2}$	$2106 \mathrm{vs}, 2094 \mathrm{pd}$	Δ	476 s	
$\mathrm{CuX}_{2}(\mathrm{NCS})_{2}$	$2070 \mathrm{vs}, 2102 \mathrm{pd}$	821 s	474 m	
$\Delta-$ overlaid by bipy absorption, $\mathrm{v}, \mathrm{m}, \mathrm{s}$, sh, pd - very, medium, strong, shoulder, poorly resolved				
doublet				

the water stretching region (ca $3050-3500 \mathrm{~cm}^{-1}$) and a shoulder in the water bending region (ca $1660 \mathrm{~cm}^{-1}$) are observed for complexes (I), (II), (III) and (IV); the water wagging modes appear at ca $530-500 \mathrm{~cm}^{-1}$ for coordinated water. The $\mathrm{M}-\mathrm{O}$ stretching vibrations are observed as weak bands in the interval ca $442-488 \mathrm{~cm}^{-1}$.

Thermal properties of the complexes

The data obtained from the TG, DTG and DTA curves, supported by chemical analysis and the X-ray diffraction pattern investigations, permit the following conclusions (Table 3): all the complexes decompose progressively. They lose water and the volatile ligands differently. In compounds (I), (II) and (IV), the loss of the last molecule of 4-bipy (or 2,4'-bipy) is accompanied by

Fig. 1 Thermoanalytical curves of $\mathrm{Co}(4-\mathrm{bipy})_{2}(\mathrm{NCS})_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}($ a $), \mathrm{Co}\left(2,4^{\prime}-\text {-bipy }\right)_{3}(\mathrm{NCS})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ (b)
Table 3 Decomposition process of complexes in air

Complex	$\begin{gathered} \text { DTA } \\ \text { peaks } /^{\circ} \mathrm{C} \end{gathered}$	Ranges of decomposition $/{ }^{\circ} \mathrm{C}$	Mass loss 1%		The observed process
			found	caled.	
$\mathrm{CoL}_{2}(\mathrm{NCS})_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$	110 endo	70-120	7.0	6.88	$-2 \mathrm{H}_{2} \mathrm{O}$
	238 endo	160-242	30.0	29.84	-L
	$\begin{gathered} 340,462 \\ \text { exo } \end{gathered}$	280-470	42.0		$\begin{aligned} & \text { forms } \mathrm{Co}_{3} \mathrm{O}_{4} \\ & \text { with } 6 \% \mathrm{CoSO}_{4} \end{aligned}$
	780 endo	~ 800	6.0	47.95	pure $\mathrm{Co}_{3} \mathrm{O}_{4}$
	900 endo	800-910	1.2	1.02	decompose to CoO
$\mathrm{NiL}_{2}(\mathrm{NCS})_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$	75 endo	50-100	3.5	3.44	$-\mathrm{H}_{2} \mathrm{O}$
	250 endo	140-270	34.0	33.29	$-\mathrm{H}_{2} \mathrm{O},-\mathrm{L}$
	318 endo,	300-420	39.0		forms mixture
	390 exo				NiSO_{4} and NiO^{*}
	490, 760	> 780	9.5	48.99	forms pure NiO
	exo				

Table 3 Continued

Complex	$\begin{gathered} \text { DTA } \\ \text { peaks } /{ }^{\circ} \mathrm{C} \end{gathered}$	Ranges of decomposition $/{ }^{\circ} \mathrm{C}$	Mass loss/\%		The observed process
			found	calcd.	
$\mathrm{CuL}(\mathrm{NCS})_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}$	100 endo	60-105	4.5	4.62	$-\mathrm{H}_{2} \mathrm{O}$
	180 endo	140-190	4.5	4.62	$-\mathrm{H}_{2} \mathrm{O}$
	240 endo	190-245	25.0	24.65	$-\mathrm{H}_{2} \mathrm{O},-0.5 \mathrm{~L}$
	305 endo	245-340	20.0	20.03	-0.5L
	370 endo	340-390	19.0	19.00	forms $\mathrm{Cu}_{2} \mathrm{~S}(\mathrm{CN})_{2}$
	418 exo,	390-760	7.0	6.68	forms CuO via mixture
	750 endo				$\mathrm{CuSO}_{4}+\mathrm{Cu}_{2} \mathrm{OSO}_{4}$
		> 850			$\mathrm{Cu}_{2} \mathrm{O}^{* *}$
$\mathrm{CoX}_{3}(\mathrm{NCS})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$	70 endo	55-110	2.7	2.72	$-\mathrm{H}_{2} \mathrm{O}$
	145 endo	110-222	18.0	17.70	-0.75X
	250 endo	222-275	17.5	17.70	$-0.75 \mathrm{X}$
	288 endo	275-290	17.5	17.70	-0.75X
		290-300	11.0	11.80	$-0.5 \mathrm{X}$
	$\begin{gathered} 430-562 \\ \text { exo } \end{gathered}$	300-565	18.0		$\begin{gathered} \text { mixture } \mathrm{CoSO}_{4} \\ \text { and } \mathrm{Co}_{3} \mathrm{O}_{4} \end{gathered}$
	680 endo	~ 800	3.0	20.25	pure $\mathrm{Co}_{3} \mathrm{O}_{4}$
	895 endo	800-905	1.0	0.81	decomposition to CoO

Table 3 Continued

Complex	$\begin{gathered} \text { DTA } \\ \text { peaks } /{ }^{\circ} \mathrm{C} \end{gathered}$	Ranges of decomposition $/{ }^{\circ} \mathrm{C}$	Mass loss/\%		The observed process
			found	calcd.	
$\mathrm{NiX}_{3}(\mathrm{NCS})_{2}$	218 endo	140-240	12.0	12.14	-0.5X
	280 endo	240-320	60.5	60.68	-2.5 X , decomposes to
	315 exo				$\mathrm{Ni}(\mathrm{NCS})_{2}$
	390 exo	340-400	6.0	5.61	forms $\mathrm{NiO}_{3} \mathrm{~S}$
	470,500	400-540	6.0		forms mixture of
	exo				NiSO_{4} and $\mathrm{NiO}^{* * *}$
	720 endo	> 775	4.0	9.96	forms pure NiO
$\mathrm{CuX}_{2}(\mathrm{NCS})_{2}$	195 endo	120-220	31.5	31.74	-X
	260 endo	220-280	31.0	31.74	-X
	370 endo	280-388	15.0	15.06	forms $\mathrm{Cu}_{2} \mathrm{~S}(\mathrm{CN})_{2}$
	420 cxo ,	388-760	6.0	5.30	forms CuO via mixture
	740 endo				$\mathrm{CuSO}_{4}+\mathrm{Cu}_{2} \mathrm{OSO}_{4}$
		>850			$\mathrm{Cu}_{2} \mathrm{O} * *$

* - with trace of other products of decomposition; ** - very slowly; *** - with trace of $\mathrm{NiO}_{3} \mathrm{~S}$

Fig. 2 Thermoanalytical curves of $\mathrm{Ni}(4 \text {-bipy })_{2}(\mathrm{NCS})_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ (a), $\mathrm{Ni}\left(2,4^{\prime} \text {-bipy }\right)_{3}(\mathrm{NCS})_{2}$ (b)
decomposition of the NCS groups, as shown by a marked exothermic peak in the DTA curves (Table 3 and Figs 1-3).
$\mathrm{CoL}_{2}(\mathrm{NCS})_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ loses all its water within the temperature range $70-$ $120^{\circ} \mathrm{C}$, with an endothermic peak at $110^{\circ} \mathrm{C}$. The anhydrous complex eliminates 1 mol of 4-bipy, and $\mathrm{CoL}(\mathrm{NCS})_{2}$ is formed. This has been described in the literature [16]. On heating in air, the intermediate $\mathrm{Co}_{3} \mathrm{O}_{4}$ with ca. $6 \% \mathrm{CoSO}_{4}$ is formed at $470^{\circ} \mathrm{C}$. The X-ray diffraction pattern indicates the formation of $\mathrm{Co}_{3} \mathrm{O}_{4}$ and CoSO_{4} in the sinter of $\mathrm{CoL}_{2}(\mathrm{NCS})_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ heated up to $470^{\circ} \mathrm{C}$ (Fig. 4a). On temperature elevation, pure $\mathrm{Co}_{3} \mathrm{O}_{4}$ is formed. A horizontal mass level begins at $910^{\circ} \mathrm{C}$ (conversion of $\mathrm{Co}_{3} \mathrm{O}_{4}$ to CoO). The DTA curve exhibits several endothermic peaks and two very strong exothermic peaks, at 340 and $462^{\circ} \mathrm{C}$.

In the first step of decomposition, the complex $\mathrm{NiL}_{2}\left(\mathrm{NCS}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}\right.$ loses 1 mol of $\mathrm{H}_{2} \mathrm{O}$ at $50-100^{\circ} \mathrm{C}$. The corresponding endothermic peak in the DTA curve is at $75^{\circ} \mathrm{C}$. Next, the compound loses the remaining water and 1 mol of 4-bipy, and $\mathrm{NiL}(\mathrm{NCS})_{2}$ is formed. In the last deamination step at $300-420^{\circ} \mathrm{C}$,

Fig. 3 Thermoanalytical curves of $\mathrm{Cu}\left(4\right.$-bipy) $\left(\mathrm{NCS}_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}\right.$ (a), $\mathrm{Cu}\left(2,4^{\prime} \text {-bipy }\right)_{2}(\mathrm{NCS})_{2}$ (b)
the remaining 4-bipy is eliminated, accompanied by anion decomposition, and a non-stoichiometric mixture of NiSO_{4} and NiO with traces of other decomposition products is formed. The corresponding exothermic peak in the DTA curve is high $\left(390^{\circ} \mathrm{C}\right)$. Next, the process of NiSO_{4} decomposition takes place. A plateau in the TG curve begins at $780^{\circ} \mathrm{C}$. Calculations on the mass loss at this point indicate stoichiometry for NiO (found 14.0%; calcd. 14.28%). The diffraction pattern of $\mathrm{NiL}_{2}(\mathrm{NCS})_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ heated up to $780^{\circ} \mathrm{C}$ is similar to that of original NiO .

When $\mathrm{CuL}(\mathrm{NCS})_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ is heated, in the first stage 1 mol of $\mathrm{H}_{2} \mathrm{O}$ is split off $\left(60-105^{\circ} \mathrm{C}\right)$, at $140-190^{\circ} \mathrm{C}$ the next 1 mol of water is split off, and at $190-245^{\circ} \mathrm{C}$ all the water and 0.5 mol of 4 -bipy are eliminated, to form the intermediate $2 \mathrm{Cu}(\mathrm{NCS})_{2} \mathrm{~L}$. In the temperature interval $245-340^{\circ} \mathrm{C}$, further decomposition steps are observed and $\mathrm{Cu}(\mathrm{NCS})_{2}$ is formed. This begins to decompose as the temperature increases.

At $340-390^{\circ} \mathrm{C}, \mathrm{Cu}_{2} \mathrm{~S}(\mathrm{CN})_{2}$ is probably formed temporarily. This intermediate was also observed by Kabešová et al. [3] during the thermal decomposition of thiocyanato $\mathrm{Cu}(\mathrm{II})$ complexes with pyridine. The product formed during the

Fig. 4 X-ray diffraction patterns of decomposition products of $\mathrm{Co}(4 \text {-bipy })_{2}(\mathrm{NCS})_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ heated up to $470^{\circ} \mathrm{C}$ (a), $\mathrm{Co}\left(2,4^{\prime} \text {-bipy }\right)_{3}(\mathrm{NCS})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ heated up to $570^{\circ} \mathrm{C}(\mathrm{b}) ;(\mathrm{x})$ $\mathrm{Co}_{3} \mathrm{O}_{4}$; (o) CoSO_{4}
decomposition of $\mathrm{Cu}_{2} \mathrm{~S}(\mathrm{CN})_{2}$ is oxidized to a non-stoichiometric mixture containing $\mathrm{CuSO}_{4}, \mathrm{CuOSO}_{4}$ and CuO (Fig. 5 a). A reaction accompanied by a slight increase in mass proceeds in the range $390-440^{\circ} \mathrm{C}$. An exothermic peak is observed at $418^{\circ} \mathrm{C}$. The horizontal mass level occurs at about $760^{\circ} \mathrm{C}$ (endothermic peak at $750^{\circ} \mathrm{C}$). Calculation from the mass loss at this point indicates stoichiometry for CuO (found 20.0%, calcd. 20.40%) (see also Fig. 5b). Above $850^{\circ} \mathrm{C}, \mathrm{CuO}$ is converted very slowly to $\mathrm{Cu}_{2} \mathrm{O}$.
$\mathrm{CoX}_{3}(\mathrm{NCS})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ displays very similar behaviour to that of $\mathrm{CoL}_{2}(\mathrm{NCS})_{2}$. $2 \mathrm{H}_{2} \mathrm{O}$ during its thermal decomposition. However, compound (IV) loses the 2,4'-bipy in several steps, and formation of a non-stoichiometric mixture of CoSO_{4} and $\mathrm{Co}_{3} \mathrm{O}_{4}$ occurs in different temperature ranges. The corresponding exothermic peak in the DTA curve for compound (IV) is high and broad $\left(430-562^{\circ} \mathrm{C}\right)$. The diffraction pattern of $\mathrm{CoX}_{3}(\mathrm{NCS})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ heated up to $570^{\circ} \mathrm{C}$ is similar to that of the sinter of compound(I) heated up to $470^{\circ} \mathrm{C}$ (Fig. 4 b).

The thermal curves of $\mathrm{NiX}_{3}(\mathrm{NCS})_{2}$ are shown in Fig. 2b. It can be seen that the complex has constant mass up to $140^{\circ} \mathrm{C}$. The $2,4^{\prime}$-bipy is removed in two steps, after which the decomposition of $\mathrm{Ni}(\mathrm{NCS})_{2}$ begins at $340^{\circ} \mathrm{C}$. During this process, an intermediate $\mathrm{NiO}_{3} \mathrm{~S}$ (found 21.5%; calcd. 21.57%) is formed. The

Fig. 5 X-ray diffraction patterns of decomposition products of $\mathrm{Cu}(4-\mathrm{bipy})\left(\mathrm{NCS}_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}\right.$ heated up to $600^{\circ} \mathrm{C}$ (a), $\mathrm{Cu}\left(4\right.$-bipy) $(\mathrm{NCS})_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ heated up to $760^{\circ} \mathrm{C}$ and $850^{\circ} \mathrm{C}$ (b); (x) CuSO_{4}; (o) $\mathrm{Cu}_{2} \mathrm{OSO}_{4}$; (Δ) CuO
diffraction pattern of the decomposition products of compound (V) heated up to $400^{\circ} \mathrm{C}$ is also almost identical to that of $\mathrm{NiO}_{3} \mathrm{~S}$ (Fig. 6a). On increase of the temperature, $\mathrm{NiO}_{3} \mathrm{~S}$ is gradually oxidized to a mixture of NiSO_{4} and NiO . In the sinter of $\mathrm{NiX}_{3}(\mathrm{NCS})_{2}$ heated up to $600^{\circ} \mathrm{C}$, these compounds also appear (Fig. 6b). The decompositions of $\mathrm{Ni}(\mathrm{NS})_{2}$ and $\mathrm{NiO}_{3} \mathrm{~S}$ relate to the exothermic effects (three clear peaks in the DTA curve) at 390,470 and $500^{\circ} \mathrm{C}$. Above $775^{\circ} \mathrm{C}$, pure NiO is formed.
$\mathrm{CuX}_{2}(\mathrm{NCS})_{2}$ has constant mass up to $120^{\circ} \mathrm{C}$. The $2,4^{\prime}$-bipy is lost in two stages, and $\mathrm{Cu}(\mathrm{NCS})_{2}$ is formed at about $280^{\circ} \mathrm{C}$. The products formed during the decomposition of $\mathrm{Cu}(\mathrm{NCS})_{2}$ are similar to those appearing for $\mathrm{CuL}(\mathrm{NCS})_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}$.

To summarize, the anhydrous complexes are more stable, and begin to decompose at higher temperatures than those containing water molecules. Many decomposition processes of the investigated complexes proceed simultaneously. Products of varying composition are formed, depending on the compound under investigation. However, it can be stated that in each case the molecules of 4-bipy or $2,4^{\prime}$-bipy are gradually eliminated, and the thiocyanates are partly oxidized (via products which are often difficult to identify) to sulphates, forming MSO_{4} or $\mathrm{M}_{2} \mathrm{OSO}_{4}$. At higher temperatures, the sulphates decompose and the corre-

Fig. 6 X-ray diffraction patterns of decomposition products of $\mathrm{Ni}\left(2,4^{\prime} \text {-bipy }\right)_{3}(\mathrm{NCS})_{2}$ heated up to $400^{\circ} \mathrm{C}(\mathrm{a}), \mathrm{Ni}\left(2,4^{\prime} \text {-bipy }\right)_{3}(\mathrm{NCS})_{2}$ heated up to $600^{\circ} \mathrm{C}(\mathrm{b}) ;(\bullet) \mathrm{NiO}_{3} \mathrm{~S}$; (o) NiSO_{4} : (x) NiO
sponding oxides remain. These conclusions are in agreement with data given in the literature on other metal thiocyanato complexes with organic N -donors [2-7, 9, 10]. During the thermal decompositions, several new complexes with 4 -bipy and $2,4^{\prime}$-bipy are formed as intermediates.

This work was supported by KBN project No. PB 0636/P3/93/04.

References

1 M. Kabešová, J. Kohout and J. Gažo, Monatsh. Chem., 107 (1976) 641.
2 L. Macašková, M. Kabešová, J. Garaj and J. Gażo, ibid., 104 (1973) 1473.
3 M. Kabešová. T. Šramko, J. Gažo, E. K. Zumadilov and V. I. Nefedov, J. Thermal Anal., 13 (1978) 55.

4 E. Jóna, T. Šramko and J. Gažo, ibid., 16 (1979) 213.
5 M. Jamnicky and E. Jóna, Z. Anorg. Allg. Chem., 487 (1982) 225; Collection Czechoslovak Chem. Commun., 47 (1982) 2479.
6 E. Jóna and M. Jamnicky, J. Thermal Anal., 27 (1983) 359
7 E. Jóna and M. Jamnicky and T. Šramko, Z. Anorg. Allg. Chem., 447 (1978) 207.
8 A. M. Golub and H. Köhler, Chemie der Pseudohalogenide, VEB, Berlin 1979.

9 L. Erdey and G. Liptay, Periodica Polytechnica (Budapest), 7 (1963) 223.
10 W. W. Wendlandt and S. Iftikhar Ali, Z. Anorg. Allgem. Chem., 337 (1965) 6.
11 M. Melnik, M. Kabešová, L. Macašková and J. Mroziński, Bull. Polish Acad. Scien. Chem., 40 (1992) 175.
12 A. Cristini and G. Ponticelli, J. Inorg. Nucl. Chem., 35 (1973) 2691.
13 C. M. Harris and E. D. McKenzie, ibid., 29 (1967) 1047.
14 C. M. Harris, T. N. Lockyer and H. Watermann, Nature, 192 (1961) 424.
15 P. P. Singh, U. P. Shukla, R. Makhija and R. Rivest, J. Inorg. Nucl. Chem., 37 (1975) 679.
16 Ch. L. Yadava, S. Tripathi and I. S. Ahuja, Transit, Met. Chem., 11 (1986) 295.
17 D. Czakis-Sulikowska and T. Rázniewska, Zeszyty Naukowe Politechniki Lódzkiej, Chemia, 30 (1974) 205.
18 J. Radwańska-Doczekalska, D. Czakis-Sulikowska, M. Markiewicz., J. Thermal Anal., (in press).
19 B. J. Hathaway, I. M. Procter, R. C. Slade and A. A. G. Tomlinson., J. Chem. Soc. 17 (1969) 2219.

20 J. R. Ferraro and K. S. Davis., Inorg. Chem. Acta, 3 (1969) 685.
21 C. K. Pearce, D. W. Grosse and W. Hessel., Chem. Eng. Data, 15 (1970) 567.
22 P. Caston, F. Dahan, S. Wimmer and F. L. Wimmer., J. Chem. Soc. Dalton Trans., 2971 (1990).

